Math 1433

22 January 2024

Warm-up:

1) Factor the number 75.
(several answer)
2) List the factors of 75 .
$1,3,5,16,25,76$

Polynomials

A polynomial in the variable x is a function that can be described by an expression of the form

$$
0 x^{n}+9 x^{n-1}+\cdots+e x^{2}+0 x+\because
$$

wheren ≥ 0 is an integer and the emoji are real or complex numbers (called the coefficients).

A real polynomial is one where every coefficient is a real number. A complex polynomial is one where every coefficient is complex. - Real numbers are complex numbers ($a+0 i$), so every real polynomial is also a complex polynomial.

Term, Degree, Rool

The degree of a polynomial is the highest power of the variable that appears in the polynomial.

- Degree 0 example: 9
- Degree 2 example: $z^{2}+z+5+6 i$
- Degree 3 example: $x^{3}+\sqrt{7} x^{2}-8 x+2$
- Degree 19 example: $\frac{1}{3} x^{19}-4 x+1$
"constank"
"quadralic" "cubic"
"degree 19"

A zero of the polynomial f is a number c for which $f(c)=0$. This is also called a root of the polynomial.

Task: Find all roots of $x^{2}-13 x+12$.
Use the "Quadratic Formula" to solve $a x^{2}+b x+c=0$.

$$
\begin{aligned}
& \Delta=b^{2}-4 a c \\
& \Delta=(-13)^{2}-4(1)(12)=121 \quad \rightarrow \quad \sqrt{\Delta}=11 \\
& x_{1}=\frac{-(-13)+11}{2(1)}=\frac{24}{2}=12 \quad \text { and } \quad x_{2}=\frac{-(-13)-11}{2(1)}=1
\end{aligned}
$$

Task: Find all roots of $x^{3}-13 x+12$.
(This is harder. We need some new Cols.)

Fackoring

Natural numbers can be "factored" (re-written as a product of smaller numbers).

- Example: $198=6 \cdot 33$

If $a=b \cdot c$, we say that b is a factor of a.
A natural number other than 1 that cannot be factored is called a prime number. The first several primes are $2,3,5,7,11,13, \ldots$

We can uniquely factor a natural number as a product of primes.

- Example: $198=2 \cdot 3^{2} \cdot 11$
(If we expand from naturals to integers, we might need to include -1 .)
- Example: $-1625=-1 \cdot 5^{3} \cdot 13$

Factoring

Polynomials can also be factored. Examples:

- $x^{2}+8 x=x(x+8)$
- $x^{2}+\frac{1}{2} x=x\left(x+\frac{1}{2}\right)$
- $x^{2}-5=(x+\sqrt{5})(x-\sqrt{5})$
- $x^{3}-12 x^{2}+41 x-42=\left(x^{2}-5 x+6\right)(x-7)$
- $x^{3}-11 x^{2}+34 x-42=\left(x^{2}-4 x+6\right)(x-7)$

If $f(x)=g(x) \cdot h(x)$, we say that $g(x)$ is a factor of $f(x)$.

Facloring

Polynomials can also be factored.
If $f(x)=g(x) \cdot h(x)$, we say that $g(x)$ is a factor of $f(x)$.

The Factor Theorem

Let $f(x)$ be a polynomial. r is a zero of f if and only if $(x-r)$ is a factor of f.

Question: Why is this useful?
Answer: If we find one zero of $f(x)$ (call it r) then the other zeros of $f(x)$ will be zeros of $g(x)=\frac{f(x)}{x-r}$. Note that g has a lower degree than f.

Example: Find all roots of $x^{3}-13 x+12$, given that 3 is a root. Slow method: Lobs of algebra Medium-fast method: "Long division" Fast method: "synthetic division"

Answer: -4, 1, 3

Finding rooks by hand

Rational Root Theorem

If $A x^{n}+\cdots+Y x+Z$ has integers for all coefficients, and $\pm \frac{p}{q}$ is a root of this polynomial, then p is a factor of Z and q is a factor of A.

With $A=1$ we get a simpler version: "If $x^{n}+\cdots+Y x+Z$ has integer coefficients and $\pm p$ is a root of this polynomial, then p is a factor of Z."

Example: Find all roots of $x^{3}-13 x+12$.
Factors of 12 are $1,2,3,4,6,12$.
So check these numbers: 1$]-1,2,-2,3,-3,4,[-4,6,-6,12,-12$. once we find a good root, this becomes the previous task.

Task 1: find the roots of $x^{2}+10 x+14$.

- Answer: $-5+\sqrt{11}$ and $-5-\sqrt{11}$

Task 2: factor $x^{2}+10 x+14$.

- Answer: $(x+5-\sqrt{11})(x+5+\sqrt{11})$

Do this now: factor $3 x^{2}+5 x+7$.

$$
\left(x-\frac{-6+\sqrt{69} i}{6}\right)\left(x-\frac{-5-\sqrt{69} i}{6}\right)
$$

Suppose $f(r)=0$ and the coefficients of f are all real numbers. Using some algebra rules (e.g., $(\bar{z})^{2}=\overline{z^{2}}$), we show that $f(\bar{r})=\overline{f(r)}=\overline{0}=0$.

Conjugate Pairs Theorem

If $a+b i$ is a root of a real polynomial, then $a-b i$ is also a root of that polynomial.

Example: $4+3 i$ is one of the zeros of $f(z)=2 z^{3}-19 z^{2}+74 z-75$.
Knowing this, find all the zeros of f without a calculator.
Answer: $4+3 i, 4-3 i, 3 / 2$

What numbers z satisfy $z^{2}=1$?
Answer: 1, -1

What are all the complex numbers z that satisfy $z^{4}=1$?
Note that $z^{2}=1$ or $z^{2}=-1$

Answer: $1,-1, i,-i$

Rools of unily

For any natural number n, the solutions to $z^{n}=1$ are exactly

- $z=e^{(2 \pi / n) i} \leftarrow$ Call this ω.
- $z=e^{2 \cdot(2 \pi / n) i}=\omega^{2}$
- $z=e^{3 \cdot(2 \pi / n) i}=\omega^{3}$
- $z=e^{(n-1) \cdot(2 \pi / n) i}=\omega^{n-1}$
- $z=e^{n \cdot(2 \pi / n) i}=\omega^{n}=1$.

These are called the $n^{\text {th }}$ roots of unity.

For real $x^{n}=1$, it is different when n is even or odd. But both kinds of pictures are boring.

The application of complex numbers to geometry-of which these pictures is one nice example-was not understood by Cardano or the others who first used $\sqrt{-1}$ in the 1500 s to solve equation. The increased popularity of complex numbers in the 1800s is partly because mathematicians realized the uses of complex numbers beyond just solving equations.

If you look closely at any one of the previous pictures, you can see that for every dot, there is also a dot at the conjugate.

Irreducible factors

A polynomial that can be factored as a product of non-constant polynomials is called reducible.

$$
\begin{aligned}
& \text { Note: } 2 x+10 \text { is irreducible } \\
& \text { even though } 2 x+10=2(x+5) \text {. }
\end{aligned}
$$

A polynomial that is not reducible is called irreducible.

- Question: How can we tell when a polynomial is irreducible?

$$
\begin{aligned}
& x^{3}-12 x^{2}+41 x-42=\left(x^{2}-5 x+6\right)(x-7)=(x-2)(x-3)(x-7) \\
& x^{3}-11 x^{2}+34 x-42=\left(x^{2}-4 x+6\right)(x-7)
\end{aligned}
$$

Irreducible factors

Question: How can we tell when a polynomial is irreducible?

- Any linear polynomial must be irreducible.
- What about quadratic polynomials?
- The roots of $a x^{2}+b x+c$ are $\frac{-b \pm \sqrt{D}}{2 a}$, where $\Delta=b^{2}-4 a c$.
(The number Δ is called the discriminant.)
- With complex numbers we can always factor quadratics using

$$
a x^{2}+b x+c=\left(x-\frac{-b+\sqrt{\Delta}}{2 a}\right)\left(x-\frac{-b-\sqrt{\Delta}}{2 a}\right)
$$

but for real numbers we need $\Delta \geq 0$ in order to use $\sqrt{\Delta}$.

Irreducible factors

Question: How can we tell when a polynomial is irreducible?
Answer: It depends on whether you allow complex numbers.

- An irreducible complex polynomial is linear.
- An irreducible real polynomial is either linear or is quadratic with $\Delta<0$.

Remember, the name "real polynomial" refers to the coefficients. A real polynomial can still have complex roots.

Task: Write $2 z^{3}-19 z^{2}+74 z-75$ as a product of irreducible complex polynomials.

- Reminder from earlier: the roots are $4+3 i, 4-3 i, 3 / 2$

The answer to this kind of task will always look like $\left(z-c_{1}\right)\left(z-c_{2}\right) \cdots\left(z-c_{n}\right)$. For this function, it is

$$
(z-(4+3 i))(z-(4-3 i))(2 z-3)
$$

Task: Write $2 x^{3}-19 x^{2}+74 x-75$ as a product of irreducible real polynomials.
This might be $\left(x-c_{1}\right) \cdots\left(x-c_{n}\right)$, but it might have quadratic factors.

$$
\left(x^{2}-8 x+25\right)(2 x-3)
$$

Irreducible faclors

The Fundamental Theorem of Algebra (version 2)

(We saw version 1 last week.)

A complex polynomial of degree n can be factored into exactly n irreducible complex factors.

This requires complex numbers. For example:

$$
x^{4}+x^{3}-21 x^{2}+9 x-270=(x-5)(x+6)\left(x^{2}+9\right)
$$

but

$$
z^{4}+z^{3}-21 z^{2}+9 z-270=(z-5)(z+6)(z+3 i)(z-3 i)
$$

Repeated roots

We already know that a number r is a root of f (also, r is a zero of f) if and only if

$$
f(x)=(x-r) h(x) .
$$

for some polynomial h.

The multiplicity of the root r is the highest number m such that

$$
f(x)=(x-r)^{m} g(x)
$$

for some polynomial g.

- If $m>1$ we say that r is a repeated root of f.

Roots of a polynomial

$$
y=(x-1)(x+2)
$$

$$
y=(x-1)^{2}(x+2)
$$

The polynomial $x^{4}+4 x^{3}-18 x^{2}+20 x-7$ has $x=1$ as a root. What is the multiplicity of this root?
Fask version OF ALL STEPS:

Fundamental Theorem of Algebra (version 3)

A polynomial of degree n has exactly n complex

 zeros, counted with multiplicities.Example: $f(z)=z^{7}+11 z^{6}+41 z^{5}+43 z^{4}-69 z^{3}-135 z^{2}+27 z+81$.

- The only numbers for which $f(z)=0$ are $-3,-1$, and 1 .
- Since $f(z)=(z+3)^{4}(z+1)(z-1)^{2}$, we can think of the zeros of f as

$$
-3,-3,-3,-3,-1,1,1 .
$$

How many roots does $97344 x^{2}-327600 x+275625$ have?

- Distinct real roots: Is $D=b^{2}-4 a c$ positive, zero, or negative?

- Distinct complex roots: Is $D=b^{2}-4 a c$ is zero or not?

- Complex roots with multiplicities: 2 . ${ }^{\text {- }}$

The "best" way to write a polynomial depends on your goal.

- $x^{2}+3 x+2$ is standard form. It is good for testing whether two polynomials are exactly equal.
- $(x+3) x+2$ is good for plugging in x-values (only one multiplication).
a $\left(x+\frac{3}{2}\right)^{2}-\frac{1}{4}$ is good for graphing (vertex is at $\left(\frac{-3}{2}, \frac{-1}{4}\right)$).
- $(x+1)(x+2)$ is good for finding zeros.

There are also multiple useful ways to write a rational function, which is one polynomial divided by another.

Parkial fractions

$\frac{4 x+1}{x^{2}+x}$ is equal to $\frac{3}{x+1}+\frac{1}{x}$.

- If you start with $\frac{3}{x+1}+\frac{1}{x}$ and want to re-write this as one fraction, you would first have to make the denominators equal: $\frac{3 x}{x(x+1)}+\frac{x+1}{x(x+1)}$.
- The idea of "partial fraction decomposition" is to start with $\frac{f(x)}{g(x)}$, where f and g are polynomials, and write it as a sum in a certain way.

A partial fraction is a rational function where the denominator is a power of an irreducible (real) polynomial and the numerator has a lower degree than the irreducible polynomial.
Examples:

$$
\frac{9}{3 x-5}
$$

$$
\frac{9}{(3 x-5)^{2}}
$$

$$
\frac{4 x+2}{3 x^{2}+5 x+7}
$$

You do not need to know the exact definition above. But you need to know the steps to re-write $\frac{f(x)}{g(x)}$ as a sum of partial fractions:

1. Factor $g(x)$ into irreducible factors.
2. Each irreducible factor of $g(x)$ will be the denominator of a partial fr.
3. Use algebra to find the numerators.

Example: Write $\frac{13 x+9}{x^{2}+3 x-10}$ as a sum of partial fractions.
Since $x^{2}+3 x-10=(x-2)(x+6)$, we are looking for

$$
\begin{aligned}
\frac{13 x+9}{(x-2)(x+6)} & =\frac{A}{x-2}+\frac{B}{x+6} \\
13 x+9 & =A(x+6)+B(x-2)
\end{aligned}
$$

After more algebra $\ldots A=s$ and $B=8$.
Final answer: $\frac{6}{x-2}+\frac{8}{x+6}$

Partial fractions setup

If $g(x)=(x-a)(x-b) \cdots$ with distinct linear factors, then writing $\frac{f(x)}{g(x)}$ as a sum of partial fractions is just like our previous example.

$$
\begin{aligned}
\frac{f(x)}{2 x^{4}+5 x^{3}-60 x^{2}+25 x+28}= & \frac{f(x)}{(x-4)(x-1)(2 x+1)(x+7)} \\
& =\frac{A}{x-4}+\frac{B}{x-1}+\frac{C}{2 x+1}+\frac{D}{x+7} \\
& \text { for some } A, B, C, D
\end{aligned}
$$

Parkial fractions setup

If g has an irreducible quadratic (degree 2) factor, we need a linear (degree 1) numerator for that fraction:

$$
\begin{array}{r}
\frac{f(x)}{x^{3}+x^{2}-8 x+238}=\frac{f(x)}{(x+7)\left(x^{2}-6 x+34\right)}=\frac{A}{x+7}+\frac{B x+C}{x^{2}-6 x+34} \\
\text { for some } A, B, C
\end{array}
$$

If g has repeated zeros, we need a partial fr. for each power:

$$
\frac{f(x)}{(x-8)^{3}(x+1)}=\frac{A}{x-r}+\frac{B}{(x-r)^{2}}+\frac{C}{(x-r)^{3}}+\frac{D}{x+1}
$$

